Messages - geometry_3d
Contents
Messages - geometry_3d
#
This package contains messages that are used in the 3D geometry space.
Position#
This message represents a position in the 3D space.
- pydantic model duckietown_messages.geometry_3d.position.Position#
Show JSON schema
{ "title": "Position", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "x": { "title": "X", "description": "X coordinate of the point", "type": "number" }, "y": { "title": "Y", "description": "Y coordinate of the point", "type": "number" }, "z": { "title": "Z", "description": "Z coordinate of the point", "type": "number" } }, "required": [ "x", "y", "z" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field x: float [Required]#
X coordinate of the point
- field y: float [Required]#
Y coordinate of the point
- field z: float [Required]#
Z coordinate of the point
- classmethod from_p(p: numpy.ndarray, header: duckietown_messages.standard.header.Header = None) duckietown_messages.geometry_3d.position.Position #
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Quaternion#
This message represents a quaternion in the 3D space.
- pydantic model duckietown_messages.geometry_3d.quaternion.Quaternion#
Show JSON schema
{ "title": "Quaternion", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "w": { "title": "W", "description": "W component of the quaternion", "type": "number" }, "x": { "title": "X", "description": "X component of the quaternion", "type": "number" }, "y": { "title": "Y", "description": "Y component of the quaternion", "type": "number" }, "z": { "title": "Z", "description": "Z component of the quaternion", "type": "number" } }, "required": [ "w", "x", "y", "z" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field w: float [Required]#
W component of the quaternion
- field x: float [Required]#
X component of the quaternion
- field y: float [Required]#
Y component of the quaternion
- field z: float [Required]#
Z component of the quaternion
- classmethod from_q(q: numpy.ndarray, header: duckietown_messages.standard.header.Header = None) duckietown_messages.geometry_3d.quaternion.Quaternion #
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Transformation#
This message represents a transformation in the 3D space.
- pydantic model duckietown_messages.geometry_3d.transformation.Transformation#
Show JSON schema
{ "title": "Transformation", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "source": { "title": "Source", "description": "The frame id of the source frame", "type": "string" }, "target": { "title": "Target", "description": "The frame id of the target frame", "type": "string" }, "position": { "title": "Position", "description": "The position of the target frame in the source frame", "allOf": [ { "$ref": "#/definitions/Position" } ] }, "rotation": { "title": "Rotation", "description": "The rotation of the target frame in the source frame", "allOf": [ { "$ref": "#/definitions/Quaternion" } ] } }, "required": [ "position", "rotation" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } }, "Position": { "title": "Position", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "x": { "title": "X", "description": "X coordinate of the point", "type": "number" }, "y": { "title": "Y", "description": "Y coordinate of the point", "type": "number" }, "z": { "title": "Z", "description": "Z coordinate of the point", "type": "number" } }, "required": [ "x", "y", "z" ] }, "Quaternion": { "title": "Quaternion", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "w": { "title": "W", "description": "W component of the quaternion", "type": "number" }, "x": { "title": "X", "description": "X component of the quaternion", "type": "number" }, "y": { "title": "Y", "description": "Y component of the quaternion", "type": "number" }, "z": { "title": "Z", "description": "Z component of the quaternion", "type": "number" } }, "required": [ "w", "x", "y", "z" ] } } }
- Fields
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field source: Optional[str] = None#
The frame id of the source frame
- field target: Optional[str] = None#
The frame id of the target frame
- field position: duckietown_messages.geometry_3d.position.Position [Required]#
The position of the target frame in the source frame
- field rotation: duckietown_messages.geometry_3d.quaternion.Quaternion [Required]#
The rotation of the target frame in the source frame
- classmethod from_pq(pq: numpy.ndarray, source: Optional[str] = None, target: Optional[str] = None, header: duckietown_messages.standard.header.Header = None) duckietown_messages.geometry_3d.transformation.Transformation #
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #