Messages - sensors
Contents
Messages - sensors
#
This package contains messages that are used to represent sensor data and sensors’ state. Sensors include, cameras, range finders, IMUs, temperature sensors, etc.
AngularVelocities#
This message represents angular velocities with respect to a 3D reference frame.
- pydantic model duckietown_messages.sensors.angular_velocities.AngularVelocities#
Show JSON schema
{ "title": "AngularVelocities", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "x": { "title": "X", "description": "Angular velocities about the x axis [rad/s]", "type": "number" }, "y": { "title": "Y", "description": "Angular velocities about the y axis [rad/s]", "type": "number" }, "z": { "title": "Z", "description": "Angular velocities about the z axis [rad/s]", "type": "number" } }, "required": [ "x", "y", "z" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field x: float [Required]#
Angular velocities about the x axis [rad/s]
- field y: float [Required]#
Angular velocities about the y axis [rad/s]
- field z: float [Required]#
Angular velocities about the z axis [rad/s]
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Camera#
This message describes the properties of a camera.
- pydantic model duckietown_messages.sensors.camera.Camera#
Show JSON schema
{ "title": "Camera", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "name": { "title": "Name", "description": "The name of the sensor", "type": "string" }, "type": { "title": "Type", "description": "The type of the sensor", "type": "string" }, "simulated": { "title": "Simulated", "description": "Whether the sensor is simulated", "type": "boolean" }, "description": { "title": "Description", "description": "A detailed description of the sensor", "type": "string" }, "frame_id": { "title": "Frame Id", "description": "The frame id of the sensor", "type": "string" }, "frequency": { "title": "Frequency", "description": "The (expected) frequency of the sensor", "type": "number" }, "maker": { "title": "Maker", "description": "The maker of the sensor", "type": "string" }, "model": { "title": "Model", "description": "The model of the sensor", "type": "string" }, "width": { "title": "Width", "description": "Width of the image", "minimum": 0, "type": "integer" }, "height": { "title": "Height", "description": "Height of the image", "minimum": 0, "type": "integer" }, "fov": { "title": "Fov", "description": "Field of view of the camera in radians", "minimum": 0, "type": "number" } }, "required": [ "name", "type", "simulated", "width", "height", "fov" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- Fields
- field width: int [Required]#
Width of the image
- Constraints
minimum = 0
- field height: int [Required]#
Height of the image
- Constraints
minimum = 0
- field fov: float [Required]#
Field of view of the camera in radians
- Constraints
minimum = 0
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field name: str [Required]#
The name of the sensor
- field type: str [Required]#
The type of the sensor
- field simulated: bool [Required]#
Whether the sensor is simulated
- field description: Optional[str] = None#
A detailed description of the sensor
- field frame_id: Optional[str] = None#
The frame id of the sensor
- field frequency: Optional[float] = None#
The (expected) frequency of the sensor
- field maker: Optional[str] = None#
The maker of the sensor
- field model: Optional[str] = None#
The model of the sensor
CompressedImage#
This message represents a compressed image.
- pydantic model duckietown_messages.sensors.compressed_image.CompressedImage#
Show JSON schema
{ "title": "CompressedImage", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "format": { "title": "Format", "description": "The format of the image data", "enum": [ "jpeg", "png" ], "type": "string" }, "data": { "title": "Data", "description": "The compressed image data", "type": "string", "format": "binary" } }, "required": [ "format", "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- Fields
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field format: Literal['jpeg', 'png'] [Required]#
The format of the image data
- field data: bytes [Required]#
The compressed image data
- classmethod from_rgb(im: numpy.ndarray, encoding: Literal['jpeg', 'png'], header: duckietown_messages.standard.header.Header) duckietown_messages.sensors.compressed_image.CompressedImage #
- as_array() numpy.ndarray #
- to_rgb() numpy.ndarray #
- to_mono8() numpy.ndarray #
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Image#
This message represents a raw (uncompressed) image.
- pydantic model duckietown_messages.sensors.image.Image#
Show JSON schema
{ "title": "Image", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "width": { "title": "Width", "description": "Width of the image", "minimum": 0, "type": "integer" }, "height": { "title": "Height", "description": "Height of the image", "minimum": 0, "type": "integer" }, "encoding": { "title": "Encoding", "description": "The encoding of the pixels", "enum": [ "rgb8", "rgba8", "bgr8", "bgra8", "mono1", "mono8", "mono16" ], "type": "string" }, "step": { "title": "Step", "description": "Full row length in bytes", "minimum": 0, "type": "integer" }, "data": { "title": "Data", "description": "Pixel data. Size must be (step * rows)", "type": "string", "format": "binary" }, "is_bigendian": { "title": "Is Bigendian", "description": "Is the data bigendian?", "type": "boolean" } }, "required": [ "width", "height", "encoding", "step", "data", "is_bigendian" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- Fields
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field width: int [Required]#
Width of the image
- Constraints
minimum = 0
- field height: int [Required]#
Height of the image
- Constraints
minimum = 0
- field encoding: Literal['rgb8', 'rgba8', 'bgr8', 'bgra8', 'mono1', 'mono8', 'mono16'] [Required]#
The encoding of the pixels
- field step: int [Required]#
Full row length in bytes
- Constraints
minimum = 0
- field data: bytes [Required]#
Pixel data. Size must be (step * rows)
- field is_bigendian: bool [Required]#
Is the data bigendian?
- classmethod from_np(im: numpy.ndarray, encoding: Literal['rgb8', 'rgba8', 'bgr8', 'bgra8', 'mono1', 'mono8', 'mono16'], header: duckietown_messages.standard.header.Header = None) duckietown_messages.sensors.image.Image #
- classmethod from_rgb(im: numpy.ndarray, header: duckietown_messages.standard.header.Header = None) duckietown_messages.sensors.image.Image #
- classmethod from_rgba(im: numpy.ndarray, header: duckietown_messages.standard.header.Header = None) duckietown_messages.sensors.image.Image #
- classmethod from_mono8(im: numpy.ndarray, header: duckietown_messages.standard.header.Header = None) duckietown_messages.sensors.image.Image #
- classmethod from_mono1(im: numpy.ndarray, header: duckietown_messages.standard.header.Header = None) duckietown_messages.sensors.image.Image #
- as_array() numpy.ndarray #
- as_rgb() numpy.ndarray #
- as_rgba() numpy.ndarray #
- as_mono8() numpy.ndarray #
- as_mono1() numpy.ndarray #
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
LinearAccelerations#
This message represents linear accelerations with respect to a 3D reference frame.
- pydantic model duckietown_messages.sensors.linear_accelerations.LinearAccelerations#
Show JSON schema
{ "title": "LinearAccelerations", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "x": { "title": "X", "description": "Linear acceleration along the x axis", "type": "number" }, "y": { "title": "Y", "description": "Linear acceleration along the y axis", "type": "number" }, "z": { "title": "Z", "description": "Linear acceleration along the z axis", "type": "number" } }, "required": [ "x", "y", "z" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field x: float [Required]#
Linear acceleration along the x axis
- field y: float [Required]#
Linear acceleration along the y axis
- field z: float [Required]#
Linear acceleration along the z axis
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Range#
This message represents a range measurement.
- pydantic model duckietown_messages.sensors.range.Range#
Show JSON schema
{ "title": "Range", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "Measured distance (meters, null if out-of-range)", "minimum": 0, "type": "number" } }, "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: Optional[float] = None#
Measured distance (meters, null if out-of-range)
- Constraints
minimum = 0
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
RangeFinder#
This message describes the properties of a range finder sensor.
- pydantic model duckietown_messages.sensors.range_finder.RangeFinder#
Show JSON schema
{ "title": "RangeFinder", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "name": { "title": "Name", "description": "The name of the sensor", "type": "string" }, "type": { "title": "Type", "description": "The type of the sensor", "type": "string" }, "simulated": { "title": "Simulated", "description": "Whether the sensor is simulated", "type": "boolean" }, "description": { "title": "Description", "description": "A detailed description of the sensor", "type": "string" }, "frame_id": { "title": "Frame Id", "description": "The frame id of the sensor", "type": "string" }, "frequency": { "title": "Frequency", "description": "The (expected) frequency of the sensor", "type": "number" }, "maker": { "title": "Maker", "description": "The maker of the sensor", "type": "string" }, "model": { "title": "Model", "description": "The model of the sensor", "type": "string" }, "fov": { "title": "Fov", "description": "The size of the arc in randians. 0 corresponds to an ideal beam along the x-axis.", "type": "number" }, "minimum": { "title": "Minimum", "description": "Minimum range value (meters)", "type": "number" }, "maximum": { "title": "Maximum", "description": "Maximum range value (meters)", "type": "number" } }, "required": [ "name", "type", "simulated", "fov", "minimum", "maximum" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- Fields
- field fov: float [Required]#
The size of the arc in randians. 0 corresponds to an ideal beam along the x-axis.
- field minimum: float [Required]#
Minimum range value (meters)
- field maximum: float [Required]#
Maximum range value (meters)
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
- field name: str [Required]#
The name of the sensor
- field type: str [Required]#
The type of the sensor
- field simulated: bool [Required]#
Whether the sensor is simulated
- field description: Optional[str] = None#
A detailed description of the sensor
- field frame_id: Optional[str] = None#
The frame id of the sensor
- field frequency: Optional[float] = None#
The (expected) frequency of the sensor
- field maker: Optional[str] = None#
The maker of the sensor
- field model: Optional[str] = None#
The model of the sensor
Temperature#
This message represents a measured temperature.
- pydantic model duckietown_messages.sensors.temperature.Temperature#
Show JSON schema
{ "title": "Temperature", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "Measured temperature (degrees Celsius)", "type": "number" } }, "required": [ "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: float [Required]#
Measured temperature (degrees Celsius)
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #