Messages - standard
Contents
Messages - standard
#
This package contains standard messages.
Header#
This message represents a standard message header used by all messages.
- pydantic model duckietown_messages.standard.header.Header#
Show JSON schema
{ "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } }
- field version: str = '1.0'#
Version of the message this header is attached to
- Constraints
pattern = ^[0-9]+.[0-9]+(.[0-9]+)?$
- field frame: Optional[str] = None#
Reference frame this data is captured in
- field txt: Optional[dict] = None#
Auxiliary data attached to the message
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Boolean#
This message represents a boolean value.
- pydantic model duckietown_messages.standard.boolean.Boolean#
Show JSON schema
{ "title": "Boolean", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "Boolean value payload", "type": "boolean" } }, "required": [ "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: bool [Required]#
Boolean value payload
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Integer#
This message represents an integer value.
- pydantic model duckietown_messages.standard.integer.Integer#
Show JSON schema
{ "title": "Integer", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "Integer value payload", "type": "integer" } }, "required": [ "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: int [Required]#
Integer value payload
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Float#
This message represents a floating point number.
- pydantic model duckietown_messages.standard.float.Float#
Show JSON schema
{ "title": "Float", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "Floating point number payload", "type": "number" } }, "required": [ "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: float [Required]#
Floating point number payload
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
List#
This message represents a generic list.
- pydantic model duckietown_messages.standard.list.List#
Show JSON schema
{ "title": "List", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "List payload", "type": "array", "items": {} } }, "required": [ "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: list [Required]#
List payload
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Dictionary#
This message represents a generic (key, value) mapping (i.e., dictionary).
- pydantic model duckietown_messages.standard.dictionary.Dictionary#
Show JSON schema
{ "title": "Dictionary", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "data": { "title": "Data", "description": "Dictionary payload", "type": "object" } }, "required": [ "data" ], "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field data: dict [Required]#
Dictionary payload
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #
Pair#
This message represents a generic pair of values.
- pydantic model duckietown_messages.standard.pair.Pair#
Show JSON schema
{ "title": "Pair", "description": "Abstract base class for generic types.\n\nA generic type is typically declared by inheriting from\nthis class parameterized with one or more type variables.\nFor example, a generic mapping type might be defined as::\n\n class Mapping(Generic[KT, VT]):\n def __getitem__(self, key: KT) -> VT:\n ...\n # Etc.\n\nThis class can then be used as follows::\n\n def lookup_name(mapping: Mapping[KT, VT], key: KT, default: VT) -> VT:\n try:\n return mapping[key]\n except KeyError:\n return default", "type": "object", "properties": { "header": { "title": "Header", "description": "Auto-generated header", "allOf": [ { "$ref": "#/definitions/Header" } ] }, "first": { "title": "First", "description": "First element of the pair" }, "second": { "title": "Second", "description": "Second element of the pair" } }, "definitions": { "Header": { "title": "Header", "type": "object", "properties": { "version": { "title": "Version", "description": "Version of the message this header is attached to", "default": "1.0", "pattern": "^[0-9]+\\.[0-9]+(\\.[0-9]+)?$", "example": "0.1.3", "type": "string" }, "frame": { "title": "Frame", "description": "Reference frame this data is captured in", "type": "string" }, "txt": { "title": "Txt", "description": "Auxiliary data attached to the message", "type": "object" } } } } }
- Fields
- field header: duckietown_messages.standard.header.Header [Optional]#
Auto-generated header
- field first: duckietown_messages.standard.pair.T1 = None#
First element of the pair
- field second: duckietown_messages.standard.pair.T2 = None#
Second element of the pair
- classmethod construct(_fields_set: Optional[SetStr] = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, update: Optional[DictStrAny] = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns
new model instance
- dict(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny #
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- classmethod from_orm(obj: Any) Model #
- classmethod from_rawdata(rd: dtps_http.structures.RawData) duckietown_messages.base.BaseMessage #
- json(*, include: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, exclude: Optional[Union[AbstractSetIntStr, MappingIntStrAny]] = None, by_alias: bool = False, skip_defaults: Optional[bool] = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Optional[Callable[[Any], Any]] = None, models_as_dict: bool = True, **dumps_kwargs: Any) unicode #
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod parse_file(path: Union[str, pathlib.Path], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod parse_obj(obj: Any) Model #
- classmethod parse_raw(b: Union[str, bytes], *, content_type: unicode = None, encoding: unicode = 'utf8', proto: pydantic.parse.Protocol = None, allow_pickle: bool = False) Model #
- classmethod schema(by_alias: bool = True, ref_template: unicode = '#/definitions/{model}') DictStrAny #
- classmethod schema_json(*, by_alias: bool = True, ref_template: unicode = '#/definitions/{model}', **dumps_kwargs: Any) unicode #
- to_rawdata() dtps_http.structures.RawData #
- classmethod update_forward_refs(**localns: Any) None #
Try to update ForwardRefs on fields based on this Model, globalns and localns.
- classmethod validate(value: Any) Model #